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In this note we derive in four separate ways the well-known result of Black
and Scholes that under certain assumptions the time-t price C(St;K; T ) of a
European call option with strike price K and maturity � = T � t on a non-
dividend stock with spot price St and a constant volatility � when the rate of
interest is a constant r can be expressed as

C(St;K; T ) = St�(d1)� e�r�K�(d2) (1)

where

d1 =
ln StK +

�
r + �2

2

�
�

�
p
�

and d2 = d1��
p
� , and where �(y) = 1p

2�

R y
�1 e

� 1
2 t

2

dt is the standard normal
cdf. We show four ways in which Equation (1) can be derived.

1. By straightforward integration.

2. By applying the Feynman-Kac theorem.

3. By transforming the Black Scholes PDE into the heat equation, for which
a solution is known. This is the original approach adopted by Black and
Scholes [1].

4. Through the Capital Asset Pricing Model (CAPM).

Free code for the Black-Scholes model can be found at www.Volopta.com.

1 Black-Scholes Economy

There are two assets: a risky stock S and riskless bond B: These assets are
driven by the SDEs

dSt = �Stdt+ �StdWt (2)

dBt = rtBtdt

The time zero value of the bond is B0 = 1 and that of the stock is S0. The
model is valid under certain market assumptions that are described in John
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Hull�s book [3]. By Itō�s Lemma the value Vt of a derivative written on the
stock follows the di¤usion

dVt =
@V

@t
dt+

@V

@S
dS +

1

2

@2V

@S2
(dS)

2 (3)

=
@V

@t
dt+

@V

@S
dS +

1

2

@2V

@S2
�2S2dt

=

�
@V

@t
+ �St

@V

@S
+
1

2
�2S2t

@2V

@S2

�
dt+

�
�St

@V

@S

�
dWt:

2 The Lognormal Distribution

2.1 The Lognormal PDF and CDF

In this Note we make extensive use of the fact that if a random variable Y 2 R
follows the normal distribution with mean � and variance �2, then X = eY

follows the lognormal distribution with mean

E [X] = e�+
1
2�

2

(4)

and variance
V ar [X] =

�
e�

2

� 1
�
e2�+�

2

: (5)

The pdf for X is

dFX(x) =
1

�x
p
2�
exp

 
�1
2

�
lnx� �
�

�2!
(6)

and the cdf is

FX(x) = �

�
lnx� �
�

�
(7)

where �(y) = 1p
2�

R y
�1 e

� 1
2 t

2

dt is the standard normal cdf.

2.2 The Lognormal Conditional Expected Value

The expected value of X conditional on X > x is LX(K) = E [XjX > x]. For
the lognormal distribution this is, using Equation (6)

LX(K) =

Z 1

K

1

�
p
2�
e�

1
2 (

ln x��
� )

2

dx:

Make the change of variable y = lnx so that x = ey, dx = eydy and the
Jacobian is ey: Hence we have

LX(K) =

Z 1

lnK

ey

�
p
2�
e�

1
2 (

y��
� )

2

dy: (8)
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Combining terms and completing the square, the exponent is

� 1
2�2

�
y2 � 2y�+ �2 � 2�2y

�
= � 1

2�2

�
y �

�
�+ �2

��2
+ �+ 1

2�
2:

Equation (8) becomes

LX(K) = exp
�
�+ 1

2�
2
� 1
�

Z 1

lnK

1p
2�
exp

0@�1
2

 
y �

�
�+ �2

�
�

!21A dy: (9)

Consider the random variable X with pdf fX(x) and cdf FX(x), and the scale-
location transformation Y = �X+�. It is easy to show that the Jacobian is 1

� ,
that the pdf for Y is fY (y)= 1

�fX
�
y��
�

�
and that the cdf is FY (y) = FX

�
y��
�

�
.

Hence, the integral in Equation (9) involves the scale-location transformation
of the standard normal cdf. Using the fact that �(�x) = 1��(x) this implies
that

LX(K) = exp

�
�+

�2

2

�
�

�
� lnK + �+ �2

�

�
: (10)

See Hogg and Klugman [2].

3 Solving the SDEs

3.1 Stock Price

Apply Itō�s Lemma to the function lnSt where St is driven by the di¤usion in
Equation (2). Then lnSt follows the SDE

d lnSt =
�
�� 1

2�
2
�
dt+ �dWt: (11)

Integrating from 0 to t, we haveZ t

0

d lnSu =

Z t

0

�
�� 1

2�
2
�
du+ �

Z t

0

dWu

so that
lnSt � lnS0 =

�
�� 1

2�
2
�
t+ �Wt

since W0 = 0. Hence the solution to the SDE is

St = S0 exp
��
�� 1

2�
2
�
t+ �Wt

�
: (12)

Since Wt is distributed normal N(0; t) with zero mean and variance t we have

that lnSt follows the normal distribution with mean lnS0 +
�
�� �2

2

�
t and

variance �2t. This implies by Equations (4) and (5) that St follows the lognor-

mal distribution with mean S0e�t and variance S20e
2�t
�
e�

2t � 1
�
. We can also

integrate Equation (11) from t to T so that, analogous to Equation (12)

ST = St exp
��
�� 1

2�
2
�
� + � (WT �Wt)

�
(13)

and ST follows the lognormal distribution with mean Ste�� and variance given

by S2t e
2��
�
e�

2� � 1
�
.

3



3.2 Bond Price

Apply Itō�s Lemma to the function lnBt. Then lnBt follows the SDE

d lnBt = rtdt:

Integrating from 0 to t we have

d lnBt � d lnB0 =
Z t

0

rudu:

so the solution to the SDE is Bt = exp
�R t

0
rudu

�
since B0 = 1. When in-

terest rates are constant then rt = r and Bt = ert. Integrating from t to T

produces the solution Bt;T = exp
�R T

t
rudu

�
or Bt;T = er� when interest rates

are constant.

3.3 Discounted Stock Price is a Martingale

We want to �nd a measure Q such that under Q the discounted stock price that
uses Bt is a martingale. Write

dSt = rtStdt+ �StdW
Q
t (14)

whereWQ
t =Wt+

��rt
� t. We have that underQ, at time t = 0; the stock price St

follows the lognormal distribution with mean S0ertt and variance S20e
2rtt

�
e�

2t � 1
�
,

but that St is not a martingale. Using Bt as the numeraire, the discounted
stock price is ~St = St

Bt
and ~St will be a martingale. Apply Itō�s Lemma to ~St,

which follows the SDE

d ~St =
@ ~S

@B
dBt +

@ ~S

@S
dSt (15)

since all terms involving the second-order derivatives are zero. Expand Equation
(15) to obtain

d ~St = � St
B2t
dBt +

1

Bt
dSt (16)

= � St
B2t

(rtBtdt) +
1

Bt

�
rtStdt+ �StdW

Q
t

�
= � ~StdW

Q
t :

The solution to the SDE (16) is

~St = ~S0 exp
�
� 1
2�

2t+ �WQ
t

�
:

This implies that ln ~St follows the normal distribution with mean ln ~S0� �2

2 t and
variance �2t. To show that ~St is a martingale under Q, consider the expectation
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under Q for s < t

EQ
h
~StjFs

i
= ~S0 exp

�
� 1
2�

2t
�
EQ
h
exp

�
�WQ

t

����Fsi
= ~S0 exp

�
� 1
2�

2t+ �WQ
s

�
EQ
h
exp

�
�
�
WQ
t �WQ

s

�����Fsi
At time s we have that WQ

t �WQ
s is distributed as N(0; t� s) which is identical

in distribution to WQ
t�s at time zero. Hence we can write

EQ
h
~StjFs

i
= ~S0 exp

�
� 1
2�

2t+ �WQ
s

�
EQ
h
exp

�
�WQ

t�s

����F0i :
Now, the moment generating function (mgf) of a random variableX with normal
distribution N(�; �2) is E

�
e�X

�
= exp

�
��+ 1

2�
2�2
�
. Under Q we have that

WQ
t�s is Q-Brownian motion and distributed as N(0; t � s). Hence the mgf of

WQ
t�s is E

Q
h
exp

�
�WQ

t�s

�i
= exp

�
1
2�

2 (t� s)
�
where � takes the place of �,

and we can write

EQ
h
~StjFs

i
= ~S0 exp

�
� 1
2�

2t+ �WQ
s

�
exp

�
1
2�

2 (t� s)
�

= ~S0 exp
�
� 1
2�

2s+ �WQ
s

�
= ~Ss:

We thus have that EQ
h
~StjFs

i
= ~Ss, which shows that ~St is a Q-martingale.

Pricing a European call option under Black-Scholes makes use of the fact that
under Q, at time t the terminal stock price at expiry, ST , follows the normal
distribution with mean Ster� and variance S2t e

2r�
�
e�

2� � 1
�
when the interest

rate rt is a constant value, r: Finally, note that under the original measure the
process for ~St is

d ~St = (�� r) ~Stdt+ � ~StdWt

which is obviously not a martingale.

3.4 Summary

We start with the processes for the stock price and bond price

dSt = �Stdt+ �StdWt

dBt = rtBtdt:

We apply Itō�s Lemma to get the processes for lnSt and lnBt

d lnSt =
�
�� 1

2�
2
�
dt+ �dWt

d lnBt = rtdt;

which allows us to solve for St and Bt

St = S0e
(�� 1

2�
2)t+�Wt

Bt = e
R t
0
rsds:
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We apply a change of measure to obtain the stock price under the risk neutral
measure Q

dSt = rSt + �StdW
Q
t )

St = S0e
(r� 1

2�
2)t+�WQ

t

Since St is not a martingale under Q, we discount St by Bt to obtain ~St = St
Bt

and

d ~St = � ~StdW
Q
t )

~St = ~S0e
� 1
2�

2t+�WQ
t

so that ~St is a martingale under Q. The distributions of the processes described
in this section are summarized in the following table

Stochastic Lognormal distribution for ST j Ft Process a
Process mean variance martingale

dS = �Sdt+ �SdW Ste
�� S2t e

2��
�
e�

2��1
�

No

dS = rSdt+ �SdWQ Ste
r� S2t e

2r�
�
e�

2��1
�

No

d ~S = � ~SdW
Q
with ~S = S

B
~St ~S2t

�
e�

2��1
�

Yes

d ~S =(�� r) ~Sdt+ � ~SdW Ste
(��r)� S2t e

2(��r)�
�
e�

2��1
�

No

.

This also implies that the logarithm of the stock price is normally distributed.

4 The Black-Scholes Call Price

In the following sections we show four ways in which the Black-Scholes call price
can be obtained. Under a constant interest rate r the time-t price of a European
call option on a non-dividend paying stock when its spot price is St and with
strike K and time to maturity � = T � t is

C(St;K; T ) = e
�r�EQ

h
(ST �K)+

���Fti (17)

which can be evaluated to produce Equation (1), reproduced here for conve-
nience

C(St;K; T ) = St�(d1)�Ke�r��(d2)
where

d1 =
log StK +

�
r + �2

2

�
�

�
p
�

and

d2 = d1 � �
p
�

=
log StK +

�
r � �2

2

�
�

�
p
�

:
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The �rst derivation is by straightforward integration of Equation (17); the sec-
ond is by applying the Feynman-Kac theorem; the third is by transforming the
Black-Scholes PDE into the heat equation and solving the heat equation; the
fourth is by using the Capital Asset Pricing Model (CAPM).

5 Black-Scholes by Straightforward Integration

The European call price C(St;K; T ) is the discounted time-t expected value of
(ST � K)+ under the EMM Q and when interest rates are constant. Hence
from Equation (17) we have

C(St;K; T ) = e�r�EQ
h
(ST �K)+

���Fti (18)

= e�r�
Z 1

K

(ST �K)dF (ST )

= e�r�
Z 1

K

ST dF (ST )� e�r�K
Z 1

K

dF (ST ):

To evaluate the two integrals, we make use of the result derived in Section (3.3)
that under Q and at time t the terminal stock price ST follows the lognormal

distribution with mean lnSt +
�
r � �2

2

�
� and variance �2� , where � = T � t is

the time to maturity. The �rst integral in the last line of Equation (18) uses
the conditional expectation of ST given that ST > KZ 1

K

ST dF (ST ) = EQ [ST jST > K]

= LST (K):

This conditional expectation is, from Equation (10)

LST (K) = exp
�
lnSt +

�
r � �2

2

�
� + �2�

2

�
��

0@� lnK + lnSt +
�
r � �2

2

�
� + �2�

�
p
�

1A
= Ste

r��(d1);

so the �rst integral in the last line of Equation (18) is

St�(d1): (19)
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Using Equation (7), the second integral in the last line of (18) can be written

e�r�K

Z 1

K

dF (ST ) = e�r�K [1� F (K)] (20)

= e�r�K

241� �
0@ lnK � lnSt �

�
r � �2

2

�
�

�
p
�

1A35
= e�r�K [1� � (�d2)]
= e�r�K�(d2):

Combining the terms in Equations (19) and (20) leads to the expression (1) for
the European call price.

5.1 Change of Numeraire

The principle behind pricing by arbitrage is that if the market is complete we
can �nd a portfolio that replicates the derivative at all times, and we can �nd an
equivalent martingale measure (EMM) N such that the discounted stock price
is a martingale. Moreover, the EMM N determines the unique numeraire Nt
that discounts the stock price. The time-t value V (St; t) of the derivative with
payo¤ V (ST ; T ) at time T discounted by the numeraire Nt is

V (St; t) = NtE
N
�
V (ST ; T )

NT

����Ft� : (21)

In the derivation of the previous section, the bond Bt = ert serves as the nu-
meraire, and since r is deterministic we can takeNT = erT out of the expectation
and with V (ST ; T ) = (ST �K)+ we can write

V (St; t) = e
�r(T�t)EN

h
(ST �K)+

���Fti
which is Equation (17) for the call price.

5.1.1 Black Scholes Under a Di¤erent Numeraire

In this section we show that we can use the stock price St as the numeraire and
recover the Black-Scholes call price. We start with the stock price process in
Equation (14) under the measure Q and with a constant interest rate

dSt = rStdt+ �StdW
Q
t : (22)

The relative bond price price is de�ned as ~B = B
S and by Itō�s Lemma follows

the process
d ~Bt = �

2 ~Btdt� � ~BtdWQ
t :

The measure Q turns ~S = S
B into a martingale, but not ~B. The measure P

that turns ~B into a martingale is

W P
t =W

Q
t � �t (23)

8



so that
d ~Bt = �� ~BtdW P

t

is a martingale under P. The value of the European call is determined by using
Nt = St as the numeraire along with the payo¤ function V (ST ; T ) = (ST �K)+
in the valuation Equation (21)

V (St; t) = StE
P

"
(ST �K)+

ST

�����Ft
#

(24)

= StE
P [ (1�KZT )j Ft]

where Zt = 1
St
. To evaluate V (St; t) we need the distribution for ZT . The

process for Z = 1
S is obtained using Itō�s Lemma on St in Equation (22) and

the change of measure in Equation (23)

dZt =
�
�r + �2

�
Ztdt� �ZtdWQ

t

= �rZtdt� �ZtdW P
t :

To �nd the solution for Zt we de�ne Yt = lnZt and apply Itō�s Lemma again,
to produce

dYt = �
�
r + �2

2

�
dt� �dW P

t : (25)

We integrate Equation (25) to produce the solution

YT � Yt = �
�
r + �2

2

�
(T � t)� �

�
W P
T �W P

t

�
:

so that ZT has the solution

ZT = e
lnZt�

�
r+�2

2

�
(T�t)��(W P

T�W
P
t ): (26)

Now, since W P
T �W P

t is identical in distribution to W
P
� , where � = T � t is the

time to maturity, and since W P
� follows the normal distribution with zero mean

and variance �2� , the exponent in Equation (26)

lnZt �
�
r + �2

2

�
(T � t)� �

�
W P
T �W P

t

�
;

follows the normal distribution with mean

u = lnZt �
�
r + �2

2

�
� = � lnSt �

�
r + �2

2

�
�

and variance v = �2� . This implies that ZT follows the lognormal distribution
with mean eu+v=2 and variance (ev � 1) e2u+v. Note that (1�KZT )+ in the
expectation of Equation (24) is non-zero when ZT < 1

K . Hence we can write
this expectation as the two integrals

EP [ (1�KZT )j Ft] =

Z 1
K

�1
dFZT �K

Z 1
K

�1
ZT dFZT (27)

= I1 � I2
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where FZT is the cdf of ZT de�ned in Equation (7). The �rst integral in
Equation (27) is

I1 = FZT
�
1
K

�
= �

�
ln 1

K � u
v

�
(28)

= �

0@� lnK + lnSt +
�
r + �2

2

�
�

�
p
�

1A
= �(d1) :

Using the de�nition of LZT (x) in Equation (10), the second integral in Equation
(27) is

I2 = K

"Z 1

�1
ZT dFZT �

Z 1

1
K

ZT dFZT

#
(29)

= K

�
EP [ZT ]� LZT

�
1

K

��
= K

�
eu+v=2 � eu+v=2�

�� ln 1
K + u+ vp
v

��

= Keu+v=2

241� �
0@� ln StK �

�
r � �2

2

�
�

�
p
�

1A35
=

K

St
e�r�� (d2)

since 1 � � (�d2) = � (d2). Substitute the expressions for I1 and I2 from
Equations (28) and (29) into the valuation Equation (24)

V (St; t) = StE
P [ (1�KZT )j Ft]

= St [I1 � I2]
= St� (d1)�Ke�r�� (d2)

which is the Black-Scholes call price in Equation (1).

6 Black-Scholes From the Feynman-Kac Theo-
rem

6.1 The Feynman-Kac Theorem

Suppose that xt follows the process

dxt = �(xt; t)dt+ � (xt; t) dW
Q
t (30)
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and suppose the di¤erentiable function V = V (xt; t) follows the partial di¤er-
ential equation given by

@V

@t
+ �(xt; t)

@V

@x
+ 1

2�(xt; t)
2 @

2V

@x2
� r(t; x)V (xt; t) = 0 (31)

with boundary condition V (xT ; T ). The Feynman-Kac theorem stipulates that
V (xt; t) has solution

V (xt; t) = E
Q
h
e�

R T
t
r(Xu;u)duV (XT ; T )

���Fti : (32)

In Equation (32) the time-t expectation is with respect to the same measure Q
under which the stochastic portion of Equation (30) is Brownian motion. See
the Note on www.FRouah.com for illustrations of the Feynman-Kac theorem.

6.2 The Theorem Applied to Black-Scholes

To apply the Feynman-Kac theorem to the Black-Scholes call price, note that
the value Vt = V (St; t) of a European call option written at time t with strike
price K when interest rates are a constant r follows the Black-Scholes PDE

@V

@t
+ rSt

@V

@S
+ 1

2�
2S2t

@2V

@S2
� rVt = 0 (33)

with boundary condition V (ST ; T ) = (ST �K)+. The Note on www.FRouah.com
explains how the PDE (33) is derived. This PDE is the PDE in Equation (31)
with xt = St; �(xt; t) = rSt; and �(xt; t) = �St. Hence the Feynman-Kac
theorem applies and the value of the European call is

V (St; t) = EQ
h
e�

R T
t
r(Xu;u)duV (ST ; T )

���Fti (34)

= e�r�EQ
�
(ST �K)+

��Ft�
which is exactly Equation (18). Hence, we can evaluate the expectation in
(34) by straightforward integration exactly in the same way as in Section 5 and
obtain the call price in Equation (1).

7 Black-Scholes From the Heat Equation

In this section we follow the derivation explained in Wilmott et al. [4]. We
�rst present a de�nition of the Dirac delta function, and of the heat equation.
We then transform the Black-Scholes PDE into the heat equation, apply the
solution through integration, and convert back to the original (untransformed)
parameters. This will produce the Black-Scholes call price.
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7.1 Dirac Delta Function

The Dirac delta function �(x) is de�ned as

�(x) =

�
0 if x 6= 0
1 if x = 0

and
Z 1

�1
�(�)d� = 1:

For an integrable function f(x) we have that

f(0) =

Z 1

�1
f(�)�(�)d�

and

f(x) =

Z 1

�1
f(x� �)�(�)d�: (35)

7.2 The Heat Equation

The heat equation is the PDE for u = u(x; �) over the domain fx 2 R; � > 0g
given by

@u

@�
=
@2u

@x2
:

The heat equation has the fundamental solution

u(x; �) =
1p
4��

exp

�
�x2
4�

�
(36)

which is the normal pdf with mean 0 and variance 2� : The initial value of the
heat equation is u(x; 0) = u0(x) which can be written in terms of the Dirac
delta function � as the limit

u0(x) = lim
�!0

u(x; �) = �(x):

Using the property (35) of the Dirac delta function, we can write the initial
value as

u0(x) =

Z 1

�1
�(x� �)u0(�)d� (37)

We can also apply the property (35) to the fundamental solution in Equation
(36) and express the solution as

u (x; �) =

Z 1

�1
u(x� �)�(�)d� (38)

=

Z 1

�1
u(x� �)u0(�)d�

=

Z 1

�1

1p
4��

e�(x��)
2=4�u0(�)d�;

with initial value

u(x; 0) =

Z 1

�1
�(x� �)u0(�)d� = u0(x);

as before.
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7.3 The Black-Scholes PDE as the Heat Equation

Through a series of transformations we convert the Black-Scholes PDE in Equa-
tion (33) into the heat equation. The �rst set of transformations convert the
spot price to log-moneyness and the time to one-half the total variance. This
will get rid of the S and S2 terms in the Black-Scholes PDE. The �rst trans-
formations are

x = ln
S

K
so that S = Kex (39)

� = �2

2 (T � t) so that t = T � 2�
�2

U(x; �) = 1
KV (S; t) =

1
KV

�
Kex; T � 2�=�2

�
:

Apply the chain rule to the partial derivatives in the Black-Scholes PDE. We
have

@V

@t
= K

@U

@�

@�

@t
=
�K�2
2

@U

@�
;

@V

@S
= K

@U

@x

@x

@S
=
K

S

@U

@x
= e�x

@U

@x
;

@2V

@S2
= �K

S2
@U

@x
+
K

S

@

@S

�
@U

@x

�
= �K

S2
@U

@x
+
K

S

@

@x

�
@U

@x

�
@x

@S

= �K
S2
@U

@x
+
K

S2
@2U

@x2

=
e�2x

K

�
@2U

@x2
� @U
@x

�
:

Substitute for the partials in the Black-Scholes PDE (33) to obtain

�K�2
2

@U

@�
+ rKexe�x

@U

@x
+
1

2
�2K2e2x

e�2x

K

�
@2U

@x2
� @U
@x

�
� rU = 0

which simpli�es to

�@U
@�

+ (k � 1) @U
@x

+
@2U

@x2
� kU = 0 (40)

where k = 2r
�2 . The coe¢ cients of this PDE does not involve x or � . The

boundary condition for V is V (ST ; T ) = (ST �K)+. From Equation (39),
when t = T and St = ST we have that x = ln STK which we write as xT , and
that � = 0. Hence the boundary condition for U is

U0(xT ) = U(xT ; 0) =
1

K
V (ST �K)+ =

1

K
(KexT �K)+ = (exT � 1)+ :

13



We make the additional transformation

W (x; �) = e�x+�
2�U(x; �) (41)

where � = 1
2 (k� 1) and � =

1
2 (k+1). This will convert Equation (40) into the

heat equation. The partial derivatives of U in terms of W are

@U

@�
= e��x��

2�

�
@W

@�
�W (x; �)�2

�
@U

@x
= e��x��

2�

�
@W

@x
� �W (x; �)

�
@2U

@x2
= e��x��

2�

�
�2W (x; �)� 2�@W

@x
+
@2W

@x2

�
:

Substitute these derivatives into Equation (40) to obtain

�2W (x; �)� @W
@�

+ (k � 1)
�
��W (x; �) + @W

@x

�
+�W (x; �)� 2�@W

@x
+
@2W

@x2
� kW (x; �) = 0

which simpli�es to the heat equation

@W

@�
=
@W 2

@x2
: (42)

From Equation (41) the boundary condition for W (x; �) is

W0(xT ) = W (xT ; 0) = e
�xTU(xT ; 0) (43)

=
�
e(�+1)xT � e�xT

�+
=
�
e�xT � e�xT

�+
:

since � = �+ 1. The transformation from V to W is therefore

V (S; t) =
1

K
e��x��

2�W (x; �): (44)

7.4 Obtaining the Black-Scholes Call Price

Since W (x; �) follows the heat equation, it has the solution given by Equation
(38), with boundary condition given by (43). Hence the solution is

W (x; �) =
1p
4��

Z 1

�1
e�(x��)

2=4�W0(�)d�

=
1p
4��

Z 1

�1
e�(��x)

2=4�
�
e�� � e��

�+
d�:

14



Make the change of variable z = ��xp
2�
so that � =

p
2�z + x and d� =

p
2�dz.

W (x; �) =
1p
2�

Z 1

�1
exp

�
�1
2
z2
�

(45)

� exp
�
�
hp
2�z + x

i
� �

hp
2�z + x

i�+
dz

Note that the integral is non-zero only when the second exponent is greater than
zero, that is, when �

�p
2�z + x

�
> �

�p
2�z + x

�
which is identical to z > �xp

2�
.

We can now break up the integral into two pieces

W (x; �) =
1p
2�

Z 1

�x/
p
2�

exp

�
�1
2
z2
�
exp

�
�
hp
2�z + x

i�
dz

� 1p
2�

Z 1

�x/
p
2�

exp

�
�1
2
z2
�
exp

�
�
hp
2�z + x

i�
dz

= I1 � I2:

Complete the square in the �rst integral I1. The exponent in the integrand is

�1
2
z2 + �

p
2�z + �x = �1

2

�
z � �

p
2�
�2
+ �x+ �2� :

The �rst integral becomes

I1 = e
�x+�2� 1p

2�

Z 1

�x/
p
2�

e�
1
2 (z��

p
2�)

2

dz:

Make the transformation y = z � �
p
2� so that the integral becomes

I1 = e�x+�
2� 1p

2�

Z 1

�x/
p
2���

p
2�

e�
1
2y

2

dy

= e�x+�
2�

�
1� �

�
� xp

2�
� �

p
2�

��
= e�x+�

2��

�
xp
2�
+ �

p
2�

�
:

The second integral is identical, except that � is replaced with �. Hence

I2 = e
�x+�2��

�
xp
2�
+ �

p
2�

�
:

Recall that x = ln S
K , k =

2r
�2 ; � =

1
2 (k � 1) =

r��2=2
�2 ; � = 1

2 (k + 1) =
r+�2=2
�2 ;

and � = 1
2�

2(T � t). Consequently, we have that

xp
2�
+ �

p
2� =

ln S
K +

�
r + �2

2

�
(T � t)

�
p
T � t

= d1

15



and that
xp
2�
+ �

p
2� = d1 � �

p
T � t = d2:

Hence the �rst integral is

I1 = exp
�
�x+ �2�

�
� (d1) :

The second integral is identical except that � is replaced by � and involves d2
instead of d1

I2 = exp
�
�x+ �2�

�
� (d2) :

The solution is therefore

W (x; �) = I1 � I2 (46)

= e�x+�
2�� (d1)� e�x+�

2�� (d2) :

The solution in Equation (46), expressed in terms of I1 and I2, is the solution for
W (x; �): To obtain the solution for the call price V (St; t) we must use Equation
(44) and transform the solution in (46) back to V . From (44) and (46)

V (S; t) = Ke��x��
2�W (x; �) (47)

= Ke��x��
2� [I1 � I2] :

The �rst integral in Equation (47) is

Ke��x��
2�e�x+�

2�� (d1) = Ke(���)x� (d1) (48)

= S� (d1)

since � � � = 1. The second integral in Equation (47) is

Ke��x��
2�e�x+�

2�� (d2) = Ke(�
2��2)�� (d2) (49)

= Ke�r(T�t)� (d2)

since �2��2 = � 2r
�2 . Combining the terms in Equations (48) and (49) produces

the Black-Scholes call price in Equation (1).

8 Black-Scholes From CAPM

8.1 The CAPM

The Capital Asset Pricing Model (CAPM) stipulates that the expected return
of a security i in excess of the risk-free rate is

E [ri]� r = �i (E [rM ]� r)

where ri is the return on the asset, r is the risk-free rate, rM is the return on
the market, and

�i =
Cov [ri; rM ]

V ar [rM ]

is the security�s beta.
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8.2 The CAPM for the Assets

In the time increment dt the expected stock price return, E [rSdt] is E
h
dSt
St

i
,

where St follows the di¤usion in Equation (2). The expected return is therefore

E

�
dSt
St

�
= rdt+ �S (E [rM ]� r) dt: (50)

Similarly, the expected return on the derivative, E [rV dt] is E
h
dVt
Vt

i
, where Vt

follows the di¤usion in (3), is

E

�
dVt
Vt

�
= rdt+ �V (E [rM ]� r) dt: (51)

8.3 The Black-Scholes PDE from the CAPM

Divide by Vt on both sides of the second line of Equation (3) to obtain

dVt
Vt

=
1

Vt

�
@V

@t
+
1

2
�2S2t

@2V

@S2

�
dt+

@V

@S

dSt
St

St
Vt
;

which is

rV dt =
1

Vt

�
@V

@t
+
1

2
�2S2t

@2V

@S2

�
dt+

@V

@S

St
Vt
rSdt: (52)

Drop dt from both sides and take the covariance of rV and rM , noting that only
the second term on the right-hand side of Equation (52) is stochastic

Cov [rV ; rM ] =
@V

@S

St
Vt
Cov [rS ; rM ] :

This implies the following relationship between the beta of the derivative, �V ,
and the beta of the stock, �S

�V =

�
@V

@S

St
Vt

�
�S :

This is Equation (15) of Black and Scholes [1]. Multiply Equation (51) by Vt
to obtain

E [dVt] = rVtdt+ Vt�V (E [rM ]� r) dt (53)

= rVtdt+
@V

@S
St�S (E [rM ]� r) dt:

This is Equation (18) of Black and Scholes [1]. Take expectations of the second
line of Equation (3), and substitute for E [dSt] from Equation (50)

E [dVt] =
@V

@t
dt+

@V

@S
[rStdt+ St�S (E [rM � r]) dt] + 1

2

@2V

@S2
�2S2dt: (54)
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Equate Equations (53) and (54), and drop dt from both sides. The term
involving �S cancels and we are left with

@V

@t
+ rSt

@V

@S
+
1

2
�2S2t

@2V

@S2
� rVt = 0: (55)

We recognize that Equation (55) is the Black-Scholes PDE in Equation (33).
Hence, we can obtain the Black-Scholes call price by appealing to the Feynman-
Kac theorem exactly as was done in Section (6.2) and solving the integral as in
Section (5).

9 Incorporating Dividends

The Black-Scholes call price in Equation (1) is for a call written on a non
dividend-paying stock. There are two ways to incorporate dividends into the
call price. The �rst is by assuming the stock pays a continuous dividend yield
q. The second is by assuming the stock pays dividends in lump sumps, "lumpy"
dividends.

9.1 Continuous Dividends

We assume that the dividend yield q is constant so that the holder of the stock
receives an amount qStdt of dividend in the time increment dt. After the
dividend is paid out, the value of the stock drops by the dividend amount.
In other words, without the dividend yield, the value of the stock increases
by rStdt, but with the dividend yield the stock increases by rStdt � qStdt =
(r � q)Stdt. Hence, the expected return becomes r � q instead of r, which
implies that he risk-neutral process for St follows Equation (14) but with drift
r � q instead of r

dSt = (r � q)Stdt+ �StdWQ
t : (56)

Following the same derivation in Section (3), Equation (56) has solution

ST = St exp

��
r � q � 1

2
�2
�
� + �WQ

�

�
where � = T � t. Hence, ST follows the lognormal distribution with mean

Ste
(r�q)� and variance S2t e

2(r�q)�
�
e�

2� � 1
�
. Proceeding exactly as in Equa-

tion (18), the call price is

C (St;K; T ) = e
�r�LST (K)� e�r� [1� F (K)] : (57)
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The conditional expectation LST (K) from Equation (10) becomes

LST (K) = exp

�
lnSt +

�
r � q � �

2

2

�
� +

�2�

2

�
(58)

��

0@� lnK + lnSt +
�
r � q � �2

2

�
� + �2�

�
p
�

1A
= Ste

(r�q)��(d1)

with d1 rede�ned as

d1 =
ln StK +

�
r � q + �2

2

�
�

�
p
�

:

Using Equation (7), the second term in Equation (18) becomes

e�r�K [1� F (K)] = e�r�K

241� �
0@ lnK � lnSt �

�
r � q � �2

2

�
�

�
p
�

1A35
= e�r�K�(d2) (59)

with d2 = d1 � �
p
� as before. Substituting Equations (58) and (59) into

Equation (57) produces the Black-Scholes price of a European call written on a
stock that pays continuous dividends

C (St;K; T ) = Ste
�q��(d1)� e�r�K�(d2):

Hence, the only modi�cation is that the current value of the stock price is
decreased by e�q� , and the return on the stock is decreased from r to r�q. All
other computations are identical.

9.2 Lumpy Dividends

To come. Same idea: the current value of the stock price is decreased by the
dividends, except not continuously.
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